

DISCLAIMER

The materials provided are for general informational and overview purposes only and do not constitute legal, financial, technical, or professional advice. No guarantee is made as to completeness, accuracy, timeliness, or fitness for any particular purpose.

Proprietary materials (all rights reserved). Supplied solely for the recipient's review and not to be copied, distributed, quoted, or disclosed to any third party without the authors' prior written consent.

No offer, commitment, or undertaking is made or implied by these materials. Any views expressed are subject to change without notice. To ask specific questions about the content or to discuss commissioning or related activities, please contact the authors via

www.SEACapita.com/Contacts

Exclusion of Liability

To the maximum extent permitted by law, the authors and their affiliates disclaim all warranties, express or implied, and shall not be liable for any loss, damage, liability, or expense of any kind (including without limitation direct, indirect, incidental, consequential, special, punitive, or exemplary damages) arising out of or in connection with the use of, reliance on, or distribution of these materials, even if advised of the possibility of such damages.

Any decisions made or actions taken based on these materials are at the recipient's sole risk. The recipient is responsible for obtaining independent advice as needed.

No Reliance; No Duty to Update

Recipients should not rely on these materials as a substitute for independent judgment or professional advice. The authors undertake no obligation to update, supplement, or correct the materials after the date provided.

Reservation of Rights

All rights in and to the materials are reserved. Acceptance or review of the materials constitutes agreement to these terms. If you have received these materials in error, please delete them and notify the authors immediately via

www.SEACapita.com/Contacts

SEACapita.com

Supply Chain + Energy + Artificial Intelligence

Carbon Capture and Storage

Investment Analysis and Strategic Outlook

Technology Assessment, Market Dynamics, and Policy Landscape 2025-2035

Comprehensive analysis for investors, financial institutions, and policymakers

October 2025

B Presentation Overview

Seven critical dimensions of CCS technology and market opportunity

Global CCS Landscape

Current deployment status across Europe and North America with project pipeline analysis

- 50 operational facilities
- 628 projects in pipeline
- North America leads with 314 projects

Historical & Future Trajectory

Evolution from 2015-2025 and projections through 2035

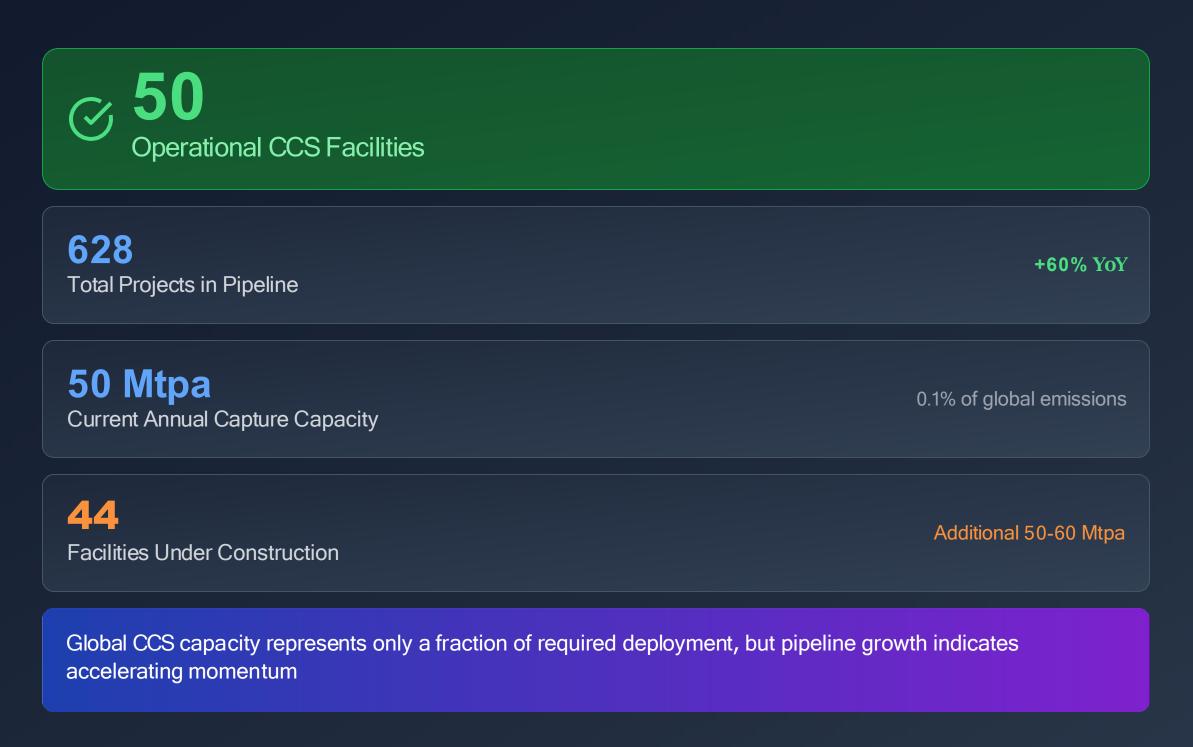
- 4x capacity growth by 2030
- 430 Mtpa target
- \$80B investment required

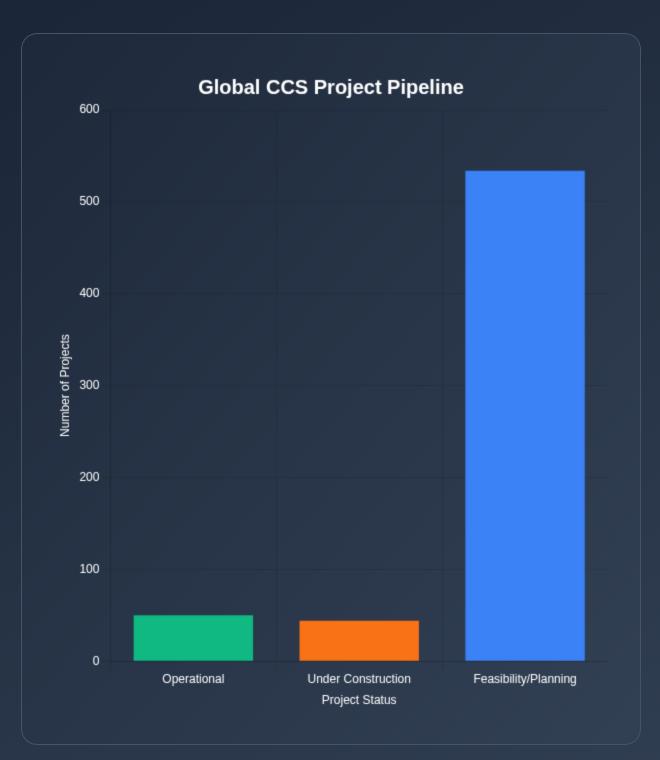
\$ Economic Analysis

Carbon abatement cost curves and competitive positioning versus alternatives

- \$50-150 per tonne CCS
- Renewables: \$40-80/tonne
- Policy support critical

Challenges & Enablers


Technical barriers, policy frameworks, and public acceptance dynamics


- 10-20% energy penalty
- Public familiarity key
- Regulatory support essential

Global CCS Deployment Status 2024-2025

Current operational capacity and project pipeline

Regional CCS Leadership: North America vs Europe

Comparative Deployment and Market Share

□ North America

314

Total Projects
45% of global projects

Key Facilities

ExxonMobil Shute Creek: 7 Mtpa Alberta Carbon Trunk Line: 1.6 Mtpa

Leading Sectors

Natural gas processing, ethanol, hydrogen

Europe

73

Total Projects
37% of global capture projects

Key Facilities

Northern Lights: Targeting 5 Mtpa Sleipner: 1 Mtpa (since 1996)

Leading Focus

Hub development & offshore storage

CCS Application by Industrial Sector

Current deployment and revenue distribution

Key Application Sectors

Oil & Gas Industry90% of global capacity

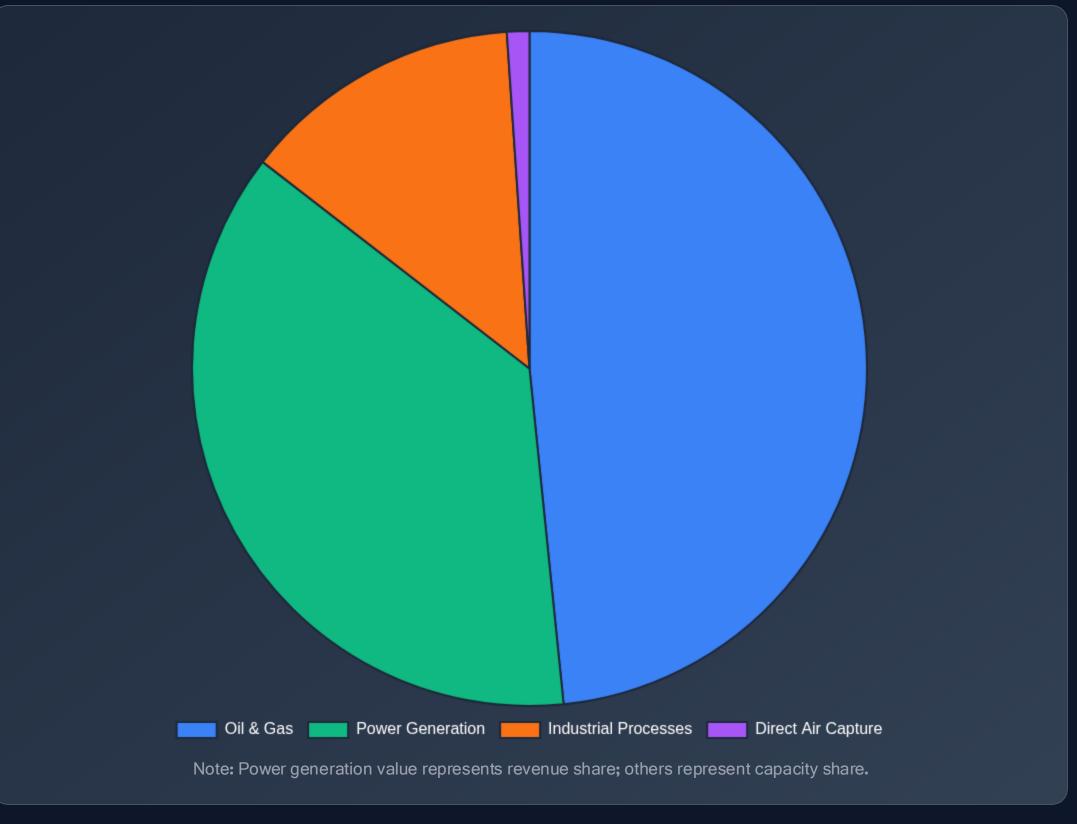
Enhanced Oil Recovery, Natural gas processing

Power Generation

69% of revenue (2024)

Coal retrofits, Gas-fired plants

Industrial Processes


Growing segment

Cement, Steel, Chemicals, Hydrogen

Direct Air Capture

20+ projects in development

Emerging tech, high cost & potential

O Historical Context: CCS Development 2015-2020

A foundational period for policy and early projects

Operational Capacity 10-15 Mtpa

Primary Barrier

High costs, limited incentives

Milestone

Paris Agreement adopted Dec 2015

Major Milestones 2015-2020

2015

Paris Agreement & Climate Alignment

Stricter US emission regulations (420 tonnes/GWh).

2018

Bipartisan Budget Act

45Q tax credit expanded to \$10-50/ton.

2020

Limited Commercial Deployment

41 global projects, 15 in US (0.4% of national emissions).

Key Learning

High-purity CO₂ sources proved most viable; >70% of projects failed.

Success Story

Shell Quest stored 7M+ tonnes with >99% retention.

Challenge

Gorgon project achieved only 30% capture rates.

Acceleration Phase: 2021-2025

Policy breakthroughs drive exponential project growth

2021-2022

Policy Breakthroughs

US Inflation Reduction Act (2022)

\$85/ton storage credit, \$180/ton DAC, extended to 2033

Canada ITC Announced

C\$2.6B investment tax credit, 37.5-60% capex coverage

EU Innovation Fund

Expansion for CCS demonstration projects

2023-2024 Project Expansion 204 new projects Announced in 2023 alone 44% increase In global planned project capacity Northern Lights Phase 1 Operational in Norway, targeting 5 Mtpa Phase 2 by 2028 Multiple US hydrogen hubs CCS-integrated hydrogen production projects initiated

2025 **Current Trajectory** 77 operational CCS facilities globally 47 under construction Significant capacity coming online \$8.2B US federal funding committed **Emerging CCS hubs** UK, China, US Gulf Coast development

CCS Deployment Growth Trajectory 2015-2025

Operational capacity and project pipeline evolution

~ 2030 CCS Capacity Projections

Multiple forecast scenarios and regional distribution

279 Mtpa

Source: BloombergNEF

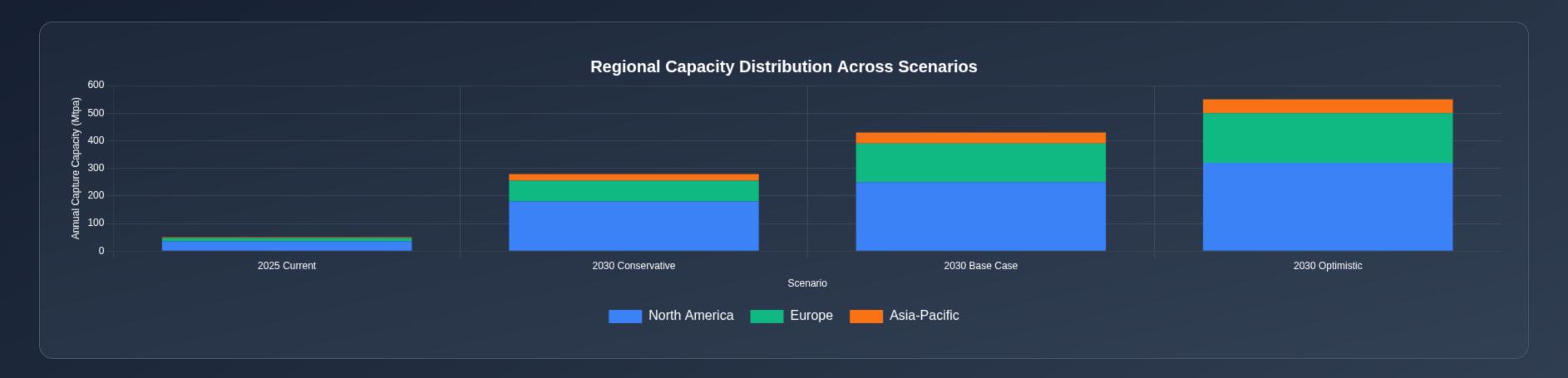
6x increase from current, assumes moderate success rates

Historical precedent suggests caution

Source: DNV / WEF

4x expansion, 0.5% of global emissions captured

Most cited industry consensus



550+ Mtpa

Source: Rystad Energy

10x increase, assumes strong policy continuation and high success rates

Requires acceleration beyond current trajectory

2035 Long-Range Projections

Market growth and sectoral deployment pathways

Investment Risks & Feasibility Constraints

Critical factors that could limit CCS deployment

→ Historical Precedent Risk

- High historical project failure rate (70-98%).
- Only 10% of IPCC pathways align with 2030 targets.
- Deployment analogues (wind, nuclear) suggest slower growth.
- Supply chain dependencies create bottlenecks.

Severity: High

Policy & Regulatory Risk

- Policy uncertainty due to political changes.
- Heavy dependence on subsidies & carbon prices.
- Permitting delays and inconsistent standards.
- Support may drop as renewables become cheaper.

Severity: Medium-High

Technical & Economic Risk

- High energy penalties (10-20% efficiency loss).
- CCS costs (\$50-150/t) vs. cheaper renewables.
- Infrastructure gaps in CO₂ pipeline networks.
- Scale requirements create a chicken-and-egg problem.

Severity: Medium

Social Acceptance & Competition

- Public opposition limits site availability.
- Low public familiarity remains a key challenge.
- Strong competition from cheaper renewables.
- Perceived as extending fossil fuel life, reducing support.

Severity: Medium

Carbon Abatement Cost Curve Framework

Methodology for comparing emission reduction technologies

Understanding the MACC

The MACC ranks technologies by cost per tonne of CO₂ avoided to guide climate investments.

Key Concepts

MAC: Incremental cost to reduce one additional unit of CO2.

Measurement: Dollars per tonne of CO₂ equivalent.

Interpretation: Negative values save money; positive values are a net cost.

Limitations: Static snapshot; costs vary by geography, scale, and policy.

Application: Helps identify cost-effective climate strategies to allocate capital.

\$ CCS Cost Profile Analysis 2024-2025

Application-specific costs and component breakdown

Industrial CCS

\$50-150 per tonne

- Natural gas applications: Lower end
- Coal applications: Higher end
- Cement/steel: \$150+ per tonne

Mid-range for hard-to-abate sectors

Power Generation with CCS

\$60-150 per tonne

- Natural gas combined cycle: \$60-100/ton
- Coal-fired plants: \$100-150/ton
- 17-33% increase in electricity costs

Less competitive than renewables

Direct Air Capture

\$300-1,000+ per tonne

- Current average: ~\$490/ton
- Voluntary market: \$100-2,000/ton range
- Scalability: \$385-530/ton at gigaton scale

Premium cost; negative emissions value

Comparative Abatement Costs: CCS vs. Alternatives

Cost-effectiveness analysis across emission reduction technologies

Energy Efficiency & Wind

Cost-Saving to Low Cost

Highest priority investments

Industrial CCS

\$50-150/ton

Competitive for hard-to-abate sectors

Direct Air Capture

\$300-1,000+/ton

Premium cost for negative emissions

Optimal Climate Investment Strategy

Prioritizing Abatement Costs & CCS Niches

Investment Priority Hierarchy

- 1 Energy Efficiency 15-20%
 Negative to \$0/ton
 Immediate ROI, reduces energy demand at source.
- 2 Renewable Energy 50-60% \$40-80/ton
 Low cost, high volume abatement, mature tech.
- Electrification 15-20%\$20-80/tonAmplifies renewable benefits via infrastructure.
- 4 Industrial CCS 10-15%
 \$50-150/ton
 For hard-to-abate industrial sectors.
- 5 Direct Air Capture 5% \$300-1,000+/ton
 Handles residual & legacy CO₂ emissions.

Where CCS is Most Competitive

Cement Production

\$150-200/ton

Unavoidable process emissions, few alternatives.

Ammonia/Chemicals

\$50-120/ton

High-purity CO2 streams, often profitable.

Blue Hydrogen

\$60-100/ton

Nears cost parity with green H₂ by 2030.

Steel Manufacturing

\$100-180/ton

Competes with H₂ reduction for process emissions.

Key Insight

CCS is vital for <10% of industrial emissions, but not cost-competitive for power generation.

EU Regulatory Framework and Support Mechanisms

European Green Deal Framework

Primary Target

Climate neutrality by 2050

Interim Goal

55% emission reduction by 2030

Legal Basis

European Climate Law (2021) & Fit for 55 package

CCS Target (Net-Zero Industry Act)

50 Mt CO₂ annual storage by 2030

Key Elements

EU ETS reform, Carbon Border Adjustment (CBAM), Innovation Fund, and Modernisation Fund.

Strategic Approach

Focus on CCS clusters, North Sea storage, and cross-border infrastructure.

Sey CCS Support Mechanisms

Innovation Fund

Grant funding from EU ETS revenues for hard-to-abate sectors. Increased allocations in 2023-2024.

EU ETS Carbon Price

Market mechanism (~€60-90/ton in 2024) on a rising trajectory, incentivizing emission reductions.

UK Track 1 Clusters

Business models & contracts with £22B committed to capture 20-30 Mt CO₂ by 2030 via key clusters.

Norway Support

Direct funding, subsidies, and carbon tax (since 1991). Key project: Northern Lights flagship.

Assessment

Climate Action Tracker rating: 'Insufficient', recommends prioritizing renewables over CCS dependence.

Samuel Continue of the Station & CCS Incentives

US Inflation Reduction Act and Canadian Investment Tax Credit

United States

Inflation Reduction Act (2022)

Largest climate investment in US history with major CCS provisions.

Section 45Q Enhancements

Credit Amounts

- \$180/ton (DAC Storage)
- \$85/ton (Geological Storage)
- \$60/ton (Utilization/EOR)

Key Features

- Direct pay option
- Starts by Jan 1, 2033
- Lower capture thresholds

Projected Impact

13-fold increase in CCS deployment by 2035.

Also includes: \$8.2B for CCS hubs & state-level policies (CA, TX, LA).

□ Canada

CCUS Investment Tax Credit

Refundable tax credit for eligible CCUS costs (2022-2040),

Credit Rates (2022-2030)

- 60% for Direct Air Capture
- 50% for Other Capture Projects
- 37.5% for Transport, Storage, Use

Key Requirements

- Eligible uses: geological storage, concrete mineralization
- 20-year operational life & knowledge sharing
- EOR projects have limited eligibility

Economic Impact

PBO estimates a \$5.7 billion cost from 2022-2028.

Policy Comparison: EU vs North America

A look at support structures, effectiveness, and implementation gaps

Region	Mechanism	Value/Support	Duration	Key Features
European Union	Innovation Fund	Variable grants from ETS	Project-specific	Top-down targets, strict regulations
United States	45Q Tax Credit	\$60-180/ton	12 years per project	Market-based, tech-neutral
Canada	CCUS Tax Credit	37.5-60% of capex	Through 2040	Refundable credits, accountability

Comparative Effectiveness Assessment

United States

Effectiveness: High

Strengths

- · Generous direct financial support
- Flexible, tech-neutral approach

Challenges

- Policy uncertainty from politics
- State-level coordination

European Union

Effectiveness: Medium

Strengths

- Comprehensive regulatory framework
- Cross-border cooperation model

Challenges

- Slower deployment vs. N. America
- Higher project costs

Canada

Effectiveness: Medium-High

Strengths

- Strong accountability
- Complements carbon pricing

Challenges

- EOR subsidy controversy
- Smaller market size vs. US

Republic Sentiment Analysis: European Perspective

Key findings from the Danish national survey on CCS

Danish National Survey 2022/2024 3,390 respondents | Comprehensive EU study

Willingness to Pay (WTP)

20-37 EUR per household/year

per ton CO₂ mitigated

Familiarity Premium

11-16 EUR higher WTP

Prior CCS knowledge boosts support

Information Effects

+8 EUR WTP with local context

Danish-specific info enhances support

Socio-Demographic Patterns

Support increases with age, education, and urban location.

Public Sentiment: North American Context

Analysis based on related climate surveys and social media sentiment

(·)

Data Limitation: No recent, comprehensive CCS-specific polling exists for the US or Canada. Analysis is based on indirect indicators.

United States

Mixed: Region & Interest-Dependent

Positive Indicators

- Bipartisan support for ecosystem-based carbon solutions.
- Support in industrial regions, citing economic benefits.

Negative Indicators

- Skepticism about extending fossil fuel viability.
- Concerns over cost-effectiveness vs. renewables.

Key Dividing Line

Support is higher when framed economically and for hard-to-abate sectors like cement or steel.

Canada

Supportive but Skeptical of Implementation

Positive Indicators

- Strong support for climate solutions with job creation.
- Recognition of CCS for hard-to-abate industries.

Negative Indicators

- · Criticism of subsidies for oil & gas industry.
- Concerns about costs vs. renewable alternatives.

Key Concern

Public fears that CCS investment is "greenwashing" or a subsidy for continued oil production.

Community Acceptance: Factors & Recommendations

Critical enablers for CCS project success

Awareness & Knowledge

Challenge

Low public familiarity and misconceptions amplify perceived risks.

Opportunity

Balanced education from trusted sources increases acceptance.

Recommendation

Invest in targeted education using trusted local messengers.

Risks & Benefits

Primary Concerns

- CO₂ leakage & contamination
- Induced seismicity

Undervalued Benefits

- Job creation & economic development
- Climate mitigation

Recommendation

Transparent risk assessment and highlight tangible local benefits.

Trust in Stakeholders

Trust Builders

- Government credibility & independent validation
- Transparent communication

Trust Barriers

Industry skepticism & perceived greenwashing

Recommendation

Multi-stakeholder governance with independent oversight.

Represent & Participation

Success Factor

Early, substantive engagement before project announcement.

Effective Approaches

- Community advisory boards & benefit-sharing
- Meaningful participation in decisions

Recommendation

Begin dialogue pre-announcement; establish community benefit funds.

NIMBY Mitigation

Challenge

Global benefits vs. local costs; proximity increases opposition.

Solutions

- Offshore storage is more acceptable
- Compensation and benefit-sharing

Recommendation

Prioritize offshore when feasible with robust compensation frameworks.

Framing & Communication

Effective Framing

- 'Waste reuse' over 'storage'
- Complementary role to renewables

Ineffective Framing

Techno-fix narrative; enabling fossil fuels

Recommendation

Emphasize industrial necessity and integration with renewables.

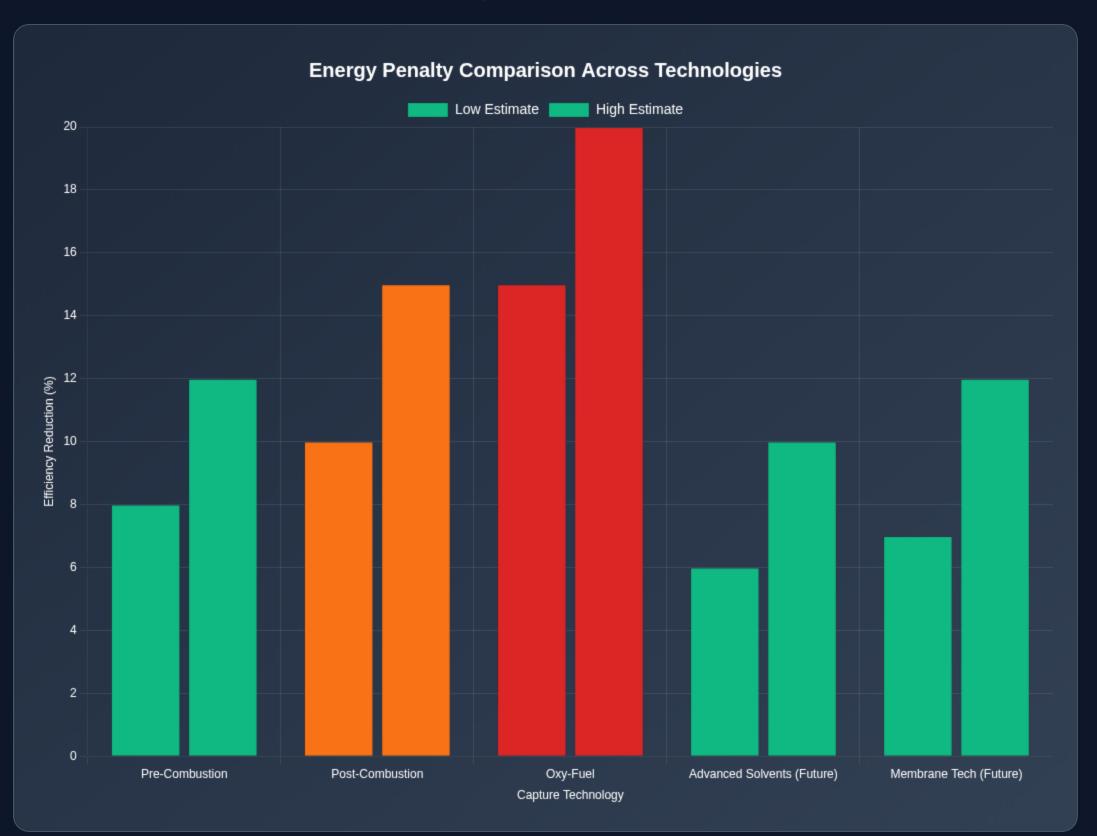
Energy Penalties & Efficiency Impacts

Analyzing the parasitic load of capture technologies

^ Capture Technology Penalties

Post-Combustion Capture 10-15% reduction

- High energy for solvent regeneration
- Solvent degradation & corrosion


Pre-Combustion Capture

8-12% reduction

- Higher capital costs
- · Limited to new facilities

Oxy-Fuel Combustion 15-20% reduction

- Energy-intensive oxygen production
- High temperature materials required

□ Transportation & Proximity Challenges

Navigating Source-Sink Mismatches and Infrastructure Needs

CO₂ Transportation Economics

Primary Method: Pipeline (8,000+ km in US, mainly for EOR)

Short <100km, Large >5Mtpa

\$4-10/ton

Economical

Mid 100-300km, Mid 1-5Mtpa

\$10-25/ton

Viable with support

Long >300km, Small <1Mtpa

\$25-45/ton

Marginal

The Proximity Problem

CO₂ sources are often far from suitable geological storage sites.

Regional Mismatches

- Europe: North Sea storage is distant from industrial centers.
- . US Midwest: Emissions sources are far from storage, with pipeline hurdles.
- Canada: Oil sands are distant from the best storage locations.

Impacts

- Transport can be 10-20% of total CCS cost.
- Complex cross-jurisdiction pipeline projects.
- Many high-emitting facilities lack nearby storage.

Continue Optimization Strategies

Hub and Cluster Model

Concentrate sources near shared storage (e.g., UK East Coast Cluster)

Source-Sink Matching

Use GIS analysis to optimize pipeline routes and minimize system costs.

Storage Site Prioritization

Develop storage sites near emission sources, balancing quality and proximity.

Emerging Solution

Cross-border projects (e.g., Northern Lights) create shared networks.

■ Geological Storage: Challenges & Risk Management

Site selection, containment risks, and monitoring requirements

Saline Aquifers

Largest global potential

Pros: Widely distributed. **Cons**: Less characterized, pressure management is critical.

Depleted Oil/Gas Fields

Moderate capacity

Pros: Well-known geology, existing infrastructure. **Cons**: Limited availability, well integrity risks.

Key Site Requirements

- Depth >800m for supercritical CO2
- High porosity (>10%) and permeability
- Secure, low-permeability caprock seal
- · No major faults for structural integrity

Containment Risks

Leakage Pathways

- Caprock breaches or induced fractures
- Poorly sealed abandoned wells
- Fault reactivation from pressure changes

Retention Rates & Consequences

Well-managed sites can achieve >99% retention. Leaks risk groundwater contamination and negate climate benefits.

Induced Seismicity

Generally low magnitude, but pressure changes can reactivate dormant faults. Requires careful site-specific analysis.

Long-Term Challenge

Containment must be ensured for millennia, requiring robust, longterm monitoring strategies.

Monitoring (MMV)

Monitoring Phases

Pre-Injection: Establish baseline geology & groundwater quality.

During Injection: Track CO2 plume and monitor pressure/seismicity.

Post-Injection: Long-term plume stability and surface monitoring.

Key Technologies

- 4D seismic imaging (time-lapse)
- Downhole pressure and temperature sensors
- Satellite-based surface deformation monitoring

MMV Challenges

- Quantifying stored CO₂ with high accuracy
- High cost (can be 10-20% of project total)
- Potentially indefinite monitoring duration

Investment Outlook & Strategic Conclusions

Capital allocation recommendations for CCS in a net-zero pathway

Market Momentum

- 4x capacity growth projected by 2030.
- Strong policy support (US IRA, EU Fund).
- 600+ projects in pipeline, led by North America.

Near-term growth trajectory is strong, backed by policy.

\$ Economic Reality

- CCS costs (\$50-150/t) exceed renewables.
- Significant energy penalty (10-20%) persists.
- Most abatement is cheaper without CCS.

Economically viable only for hard-to-abate industrial sectors.

Critical Barriers

- High historical project failure rate.
- Massive CO₂ transport infrastructure gap.
- Public acceptance and scaling challenges remain.

High execution risks require technical and social solutions.

Capital Allocation Recommendations

Invest selectively in industrial CCS, while maintaining a portfolio balanced towards renewables and efficiency.

P1: Industrial CCS (10-15%)

Target cement, steel, chemicals. Rationale: Few alternatives, strong policy.

P2: Blue Hydrogen w/CCS (5-10%)

Target hydrogen hubs. Rationale: Complements green H2, regional advantages.

P3: CCS Infrastructure (5%)

Target CO2 pipelines, storage. Rationale: Enables scale, long-term value

Emerging: Direct Air Capture (2-5%)

Target DAC tech. Rationale: Essential for net-zero, high policy support.

Portfolio Context

- 50-60% Renewables (lowest cost)
- 15-20% Energy Efficiency (low cost)
- 10-20% Industrial Decarbonization (incl. CCS)

Key Success Factors

- . Policy continuity and robust project selection
- . Focus on North America for best risk/reward
- Strong public and community engagement

Risk Mitigation

Diversify technologies; prioritize projects with offtake agreements.